Erratum: Retrieval of the effective constitutive parameters of bianisotropic metamaterials [Phys. Rev. E 71, 046610 (2005)] Xudong Chen, Bae-Ian Wu, Jin Au Kong, and Tomasz M. Grzegorczyk (Received 18 December 2005; published 24 January 2006) DOI: 10.1103/PhysRevE.73.019905 PACS number(s): 41.20.Jb, 42.25.Bs, 78.20.Ci, 99.10.Cd The formula of the redefined impedance for the TM3 incidence listed in Table I has been reported erroneously. The correct formula should be $z = \sqrt{\epsilon_z \mu_x - \mu_x/\mu_y \xi_0^2/\mu_x}$. Consequently, μ_x , instead of ϵ_z , is solved in the incidence TM3, so that ϵ_x , ϵ_y , μ_x , and μ_z are each solved twice. The fifth parameter, ξ_0 , is retrieved using two different approaches. From the incidences TM1 and TM3, we formulate ϵ_z and μ_v in terms of ξ_0 : $$\epsilon_z = z_{TM1}^2 z_{TM3}^2 \mu_x \mu_y / \epsilon_x,\tag{1}$$ $$\mu_{y} = \frac{1 \pm \sqrt{1 + 4z_{TM1}^{2} \xi_{0}^{2} / (z_{TM3}^{2} \epsilon_{x} \mu_{x})}}{2z_{TM1}^{2} / \epsilon_{x}}.$$ (2) Thus, the S parameters for the case TE2 can be calculated using Eq. (7) for a given ξ_0 . In the first (second) retrieval method, the value of ξ_0 is obtained by optimizing its real and imaginary parts so that the calculated S_{11} (S_{21}) parameter matches the measured one. For the lossless case, whereas the first retrieval method still uses Eq. (16), the second one obtains ξ_0 directly from z_{TE2} and n_{TE2} , $$\xi_0 = (-i)(\mu_{\nu}/z_{TE2} - n_{TE2}),\tag{3}$$ where $\epsilon_z = \epsilon_x n_{TE2}^2 / n_{TM1}^2$ and $\mu_y = \mu_x n_{TE2}^2 / n_{TM3}^2$. Upon introducing these corrections, the parameters obtained for the cases of Figs. 5–7 are replaced by those shown here in Figs. 1–3. Note that none of the conclusions of our paper are affected by this correction. FIG. 1. Retrieval results for a lossless edge-coupled SRR metamaterial. FIG. 2. Retrieval results for a lossy edge-coupled SRR metamaterial. FIG. 3. Retrieved results for a broadside-coupled SRR metamaterial.